Меню

Автоматические регуляторы температуры горячего водоснабжения

Автоматический регулятор ГВС: что, зачем и почему

Автоматические регуляторы температуры горячего водоснабжения.

Температурная диаграмма

Однажды зимой я получил болезненный ожог, который потом долго напоминал о себе. Обиднее всего было то, что все произошло в собственной ванной комнате за долю секунды — я нечаянно коснулся предплечьем полотенцесушителя. Неприятности не случилось бы, если б в теплоузле дома был установлен автоматический регулятор температуры горячего водоснабжения. Именно установка этого прибора в минувшую среду стала темой встречи в ООО “УК ЖКХ” с председателями советов домов.

Норма закона

Пункт 9.5.1 Правил технической эксплуатации тепловых энергоустановок гласит: “Температура воды в системе горячего водоснабжения поддерживается при помощи автоматического регулятора, установка которого в системе горячего водоснабжения обязательна. Присоединение к трубопроводам теплового пункта установок горячего водоснабжения с неисправным регулятором температуры воды не допускается”.
Если для новых построенных МКД, а также домов, подлежащих капремонту, пункт безусловно выполняется, то с остальными домами не все так просто: чтобы выполнить требование законодательства, управляющей компании требуется получить согласие собственников.
ООО “УК ЖКХ” управляет 144 многоквартирными домами в Новочебоксарске и остается одной из крупнейших УК в нашем городе. В 35 жилых домах теплоузлы оборудованы автоматическим регулятором ГВС. Сейчас в УК проводят разъяснительную работу о необходимости установки данных регуляторов в остальных домах.

Зачем нужен прибор

В дома большинства горожан тепло и горячая вода поступают по одной магистральной трубе с ТЭЦ-3. Если в теплоузле автоматический регулятор ГВС отсутствует, то температура горячей воды, которая течет из кранов в квартирах, может быть слишком высокой (и тогда есть риск обжечься) или слишком низкой. Последнее возможно в сильные морозы, когда горячую воду вынужденно переключают на обратку, чтобы не расплавились пластиковые трубы, не вышли из строя счетчики и не пострадали люди.
Всех этих проблем позволяет избежать автоматический регулятор, который следит за тем, чтобы из крана в квартирах текла вода нормативной температуры: не ниже 60 градусов и не выше 75 градусов. Причем, как рассказали представители ресурсоснабжающей организации “Т Плюс”, прибор можно настроить так, чтобы днем вода текла горячее (до 75 градусов по Цельсию), а в ночные часы, когда ею практически не пользуются, подавалась температурой 60 градусов.

О стоимости регулятора

Она зависит от нескольких факторов, в том числе диаметра клапана, типа контроллера, вида электропривода и датчиков температуры, используемого циркуляционного насоса, но в среднем составляет около 100 тысяч рублей.
Сколько регуляторов нужно на дом? Это зависит от числа теплоузлов (на каждый теплоузел один прибор) и их состояния. Если оборудование ветхое, то неизбежно потребуется замена каких-то узлов и деталей.

  • КСТАТИ
    В Новочебоксарске из 544 МКД регуляторы ГВС установлены в 157 (29%).

Технология регулирования нагрузки системы горячего водоснабжения

Д.т.н. П.В. Ротов, заместитель главного инженера;
А.А. Сивухин, начальник ПТО, МУП «Городской теплосервис»;
д.т.н. В.И. Шарапов, профессор, заведующий кафедрой «Теплогазоснабжение и вентиляция», ФГБОУ ВПО «Ульяновский государственный технический университет», г. Ульяновск

Автоматическое регулирование нагрузки системы ГВС

Потребление горячей воды в жилых и общественных зданиях характеризуется значительной неравномерностью как в течение суток, так и в отдельные дни недели. Мгновенный расход потребляемой воды является случайной величиной. При этом, в разные дни недели, в одно и то же время при прочих равных условиях, вероятность потребления аналогичного количества воды мала. В рабочие дни наибольшее потребление воды наблюдается в вечерние часы, в выходные дни — с утра. Кроме того, на неравномерность потребления могут оказывать влияние климатические условия, периоды массовых отпусков и школьные каникулы, даже телевизионные передачи.

Для компенсации тепловых потерь в трубопроводах системы ГВС предусматривают циркуляцию. Но, поскольку данные по тепловым потерям во внутридомовых системах ГВС зачастую отсутствуют, то для их определения используют долевую часть от расхода воды, а именно 10% от расчетного расхода воды, определенного для неотопительного периода [1, 2]. В [3] потери теплоты трубопроводами систем ГВС учитываются прибавлением доли среднего за отопительный период расхода воды в системах ГВС с учетом коэффициента, учитывающего потери теплоты трубопроводами в зависимости от конструктивных особенностей и наличия изоляции, который изменяется в пределах от 0,15 до 0,35.

Проведенное обследование систем ГВС жилых домов [4] показало, что реальное значение циркуляционного расхода в трубопроводах систем ГВС существенно превышает расчетные значения и составляет 40-90% от расхода в подающем трубопроводе и 70-500% от расхода воды на ГВС. При этом расход воды в циркуляционном трубопроводе зависит от режима потребления горячей воды. Установка на циркуляционных трубопроводах жилых домов дроссельных шайб с постоянным отверстием не позволяет в полной мере учесть режим работы систем ГВС. Повышенный циркуляционный расход способствует росту температуры воды в циркуляционном трубопроводе относительно температуры воды в обратном трубопроводе тепловой сети более чем на 10 О С, что, в свою очередь, влияет на экономичность работы источника теплоснабжения.

Читайте также:  Матовая краска для батарей отопления без запаха

Повысить эффективность работы системы ГВС возможно путем автоматического регулирования расхода воды в циркуляционном трубопроводе с учетом неравномерности режима потребления горячей воды. Одна из таких технологий, разработанная в научно-исследовательской лаборатории «Теплоэнергетические системы и установки» (НИЛ «ТЭСУ») УлГТУ, реализована в 2014 г. на ЦТП Ульяновского МУП «Городской теплосервис» [4]. На рис. 1 показана принципиальная схема ЦТП с установленным оборудованием. Регулирование расхода воды в циркуляционном трубопроводе осуществляется запорно-регулирующим клапаном (регулятором температуры) 11, установленном на циркуляционном трубопроводе. Управление запорно-регулирующим клапаном осуществляется программируемым логическим контроллером по импульсу от датчика температуры 12. В период водоразбора тепловые потери в системе ГВС компенсируются за счет слива воды, поэтому можно снизить расход воды в циркуляционном трубопроводе. При отсутствии водоразбора расход воды в циркуляционном трубопроводе поддерживается в зависимости от определенного перепада температур в подающем и обратном трубопроводе системы ГВС, тем самым обеспечивая необходимую тепловую нагрузку.

В течение 2014 г. проводился инженерный эксперимент, в результате которого анализировались параметры работы ЦТП при различных режимах настройки регулятора температуры, установленного на циркуляционном трубопроводе. Настройка регулятора температуры по времени суток осуществлялась на основании предварительного анализа работы ЦТП. На рис. 2 представлена диаграмма изменения расхода воды в системе ГВС за 6 дней, из которой следует, что максимальный отбор горячей воды происходит в период с 8:00 до 15:00-16:00. Среднечасовое значение температуры горячей воды за этот же период составило 60,3 О С. Во время минимального разбора горячей воды настройка регулятора температуры производилась на температурный перепад в системе ГВС, равный 10 О С.

В период с 19.06.2014 г. по 06.08.2014 г. анализировались режимы работы ЦТП с различными настройками регулятора температуры на циркуляционном трубопроводе. В I режиме регулятор температуры был настроен на круглосуточном поддержании температуры воды, равной 50 О С, в циркуляционном трубопроводе. Во II режиме настройки регулятора температуры изменялись в течение суток по графику: с 9:00 до 15:00 поддерживалась температура циркуляционной воды, равная 45 О С, в остальное время температура циркуляционной воды поддерживалась равной 50 О С. В III режиме регулирование температуры воды в циркуляционном трубопроводе не производилось.

Среднечасовые значения параметров работы ЦТП в каждом из трех режимов представлены в табл. 1. Экономия тепловой энергии на ЦТП определялась для I и II режимов в сравнении с III режимом, когда не производилось регулирование циркуляционного расхода воды.

Таблица 1. Режимные показатели работы ЦТП при регулировании циркуляционного расхода в период с 19.06.2014 г. по 06.08.2014 г.

Режим Тепловое потребление системой ГВС, Г кал/ч Среднечасовая температура воды в подающем трубопроводе системы ГВС, °С Среднечасовая температура воды в циркуляционном трубопроводе системы ГВС, °С Среднечасовой расход воды в подающем трубопроводе системы ГВС, т/ч Среднечасовой расход воды в циркуляционном трубопроводе системы ГВС, т/ч
1 режим 0,1849 58,85 45,46 7,18 5,23
II режим 0,1833 61,63 46,49 7,74 6,10
III режим 0,212 64,30 53,53 12,76 11,39

В результате анализа данных, представленных в табл. 1, установлено, что экономия тепловой энергии на ЦТП в режимах с регулированием циркуляционного расхода горячей воды относительно режима без регулирования составляет 12-14% (0,03 Гкал/ч). При этом в режиме с дифференцированной по времени суток температурой воды в циркуляционном трубопроводе ГВС достигается большая экономия теплоты.

В отопительном периоде с 19.10.2014 г. по 17.11.2014 г. на том же ЦТП проводился анализ режимных параметров в условиях регулирования и отсутствия регулирования температуры циркуляционной воды в системе ГВС. В первом периоде (I режим) настройки регулятора температуры изменялись в течение суток по графику: с 9 до 15 ч поддерживалась температура циркуляционной воды равная 45 О С, в остальное время температура циркуляционной воды поддерживалась равной 50 О С. Во втором периоде (II режим) регулирование температуры воды в циркуляционном трубопроводе не производилось.

Анализ среднечасовых показателей работы ЦТП в отопительном периоде показывает, что в I режиме теплоты потребляется на 20% меньше, чем во II (табл. 2).

Таблица 2. Режимные показатели работы ЦТП при регулировании циркуляционного расхода в период с 19.10.2014 г. по 17.11.2014 г.

Режим Тепловое потребление системой ГВС, Г кал/ч Среднечасовая температура воды в подающем трубопроводе системы ГВС, °С Среднечасовая температура воды в циркуляционном трубопроводе системы ГВС, °С Среднечасовой расход воды в подающем трубопроводе системы ГВС, т/ч Среднечасовой расход воды в циркуляционном трубопроводе системы ГВС, т/ч
1 режим 0,19 72,93 50,3 3,22 0,99
II режим 0,24 73,13 60,66 11,56 9,53
Читайте также:  Теплые полы водяные не допускается

На рис. 3-5 показана динамика изменения расхода теплоносителя, температуры воды и теплопотребления в системе ГВС по часам суток при различных режимах работы ЦТП в период с 19.10.2014 г по 17.11.2014 г На приведенных диаграммах четко видно снижение температуры циркуляционной воды, расхода воды и теплопотребления в системе ГВС в период регулирования температуры циркуляционной воды. Снижение теплопотребления приводит к соответствующей экономии топливно-энергетических ресурсов. Равенство температуры воды, подаваемой на ГВС при различных режимах, показывает, что снижение расхода теплоносителя и количества тепловой энергии обусловлено только оптимизацией режима работы системы ГВС за счет регулирования расхода воды в циркуляционном трубопроводе. При этом температура воды в подающем трубопроводе системы ГВС соответствует нормативным требованиям (рис. 3).

С целью оценки инвестиционной привлекательности проведено технико-экономическое обоснование реализованной технологии регулирования нагрузки системы ГВС. На основании анализа режимов работы системы ГВС определена минимальная среднечасовая экономия теплоты 0,03 Гкал/ч (табл. 1). Предполагаемое время работы системы ГВС с регулированием циркуляционного расхода составляет 3600 ч в год. Суммарная экономия теплоты на одном ЦТП за этот период составит 108 Гкал, что при тарифе за тепловую энергию 1500 руб./Гкал равно 162 тыс. руб. Затраты на приобретение оборудования для системы автоматического регулирования составили 74,6 тыс. руб., т.е. технология окупается за половину временного периода работы системы автоматического регулирования, т.е. за 2,5-3 месяца.

Энергосберегающий потенциал разработанной технологии при ее реализации на всех ЦТП системы теплоснабжения Ульяновска составляет более 12 млн руб. в год, что, с учетом небольшого срока окупаемости, является выгодным инвестиционным проектом.

При технико-экономическом обосновании не учитывались снижение затрат электроэнергии на транспорт теплоносителя, снижение тепловых потерь в трубопроводах системы ГВС, возможное увеличение комбинированной выработки электроэнергии на ТЭЦ за счет снижения температуры обратной сетевой воды. С учетом этих составляющих срок окупаемости такой технологии будет еще меньше.

Поквартирные тепловые пункты

Примером энергоэффективных технологий использования теплоты в системах теплопотребления в ряде случаев могут служить поквартирные тепловые пункты (ПТП), которые представляют собой комплекс устройств, преобразующих параметры теплоносителя, перераспределяющих потоки теплоносителя в контурах отопления и ГВС квартиры и управляющих тепловыми нагрузками этих контуров. Применение ПТП в системах водоснабжения и отопления позволяет упростить схему разводящих внутри- домовых сетей теплоснабжения, снизить затраты на эксплуатацию объекта капитального строительства (за счет отсутствия централизованной системы ГВС) [5]. При этом владельцы квартир могут по своему усмотрению устанавливать необходимый экономичный тепловой режим и тем самым определять приемлемую оплату за потребленную тепловую энергию.

Недостатком открытой схемы теплоснабжения (рис. 6) в основном является наличие постоянного круглосуточного расхода циркуляционной воды в системе ГВС, что приводит к сверхнормативным тепловым потерям в системе ГВС и высоким энергетическим затратам на циркуляцию воды в системе ГВС. Типовая открытая система теплоснабжения характеризуется большой металлоемкостью, что приводит к увеличению начальных затрат на ее сооружение.

В НИЛ «ТЭСУ» УлГТУ разработан ряд технологий ГВС на основе ПТП [6, 7], одна из которых представлена на рис. 7.

Основным принципом работы такой системы теплоснабжения является то, что подготовка горячей воды происходит в непосредственной близости от водоразборных кранов, при этом отсутствуют тепловые потери в трубопроводе подачи ГВС, что позволяет полностью исключить циркуляцию воды в системе ГВС.

Определим экономию от внедрения ПТП в открытой системе теплоснабжения на примере одного стояка системы ГВС в 9-этажном многоквартирном жилом доме. Протяженность циркуляционных трубопроводов принята равной 60 м, диаметр — 20 мм.

Суммарный расход воды на нужды теплоснабжения определяем по формуле:

где Gот, Gгвс — расходы воды соответственно на отопление и ГВС.

Расход воды на ГВС определяем по формуле:

где Gг Gu — расходы горячей воды соответственно в водоразборных приборах и в циркуляционном трубопроводе.

Тепловые потери в циркуляционном трубопроводе при этом составят:

где qц — плотность теплового потока через 1 м циркуляционного трубопровода:

1ц=60 м — протяженность циркуляционного трубопровода; tц— температура циркуляционной воды, О С; tнв — температура наружного воздуха, О С; λст- — коэффициент теплопроводности стали, Вт/(м. О С); dвн — внутренний диаметр трубопровода, м; dн — наружный диаметр трубопровода, м; αв — коэффициент теплоотдачи от воды к внутренней стенке трубы, Вт/(м 2 .К); αвн — коэффициент теплоотдачи от наружной стенки трубы к наружному воздуху, Вт/(м 2 .К).

При годовой работе системы ГВС тепловые потери в циркуляционном трубопроводе составят:

Читайте также:  Свч отопление для частного дома

где τгвс год =8160 — количество часов работы системы ГВС в год, ч.

Отсутствие теплопотерь в циркуляционном трубопроводе при использовании ПТП приведет к снижению расхода топлива:

где Q P н — низшая теплота сгорания топлива, Дж/кг; ηбр, — КПД котла.

При стоимости 1 т у.т. равной 3700 руб. экономия с одного стояка внутридомовой системы ГВС составит Птэ=3,0 тыс. руб. в год.

Расход воды на циркуляцию:

где с — удельная теплоемкость воды, ккал/(кг О С); ∆tц — температурный перепад в циркуляционном трубопроводе, О С.

Годовой расход воды в циркуляционном трубопроводе составит:

Расход электроэнергии циркуляции горячей воды при этом:

где γ — удельный вес перекачиваемой жидкости, Н/м 3 ; Н — напор насоса, м; ηн — КПД насоса.

Потребление электроэнергии на привод насоса составит 17,6 кВтч/год, что в денежном эквиваленте при стоимости электроэнергии 4 руб./кВт*ч составит Пэ=70,4 тыс. руб. в год.

Общая экономия эксплуатационных затрат при использовании в системах ГВС ПТП составит:

Побщ=Пэц+Птэ+Пэ=81,2 тыс. руб. в год. (10)

Кроме того, при отсутствии циркуляционного трубопровода уменьшается и металлоемкость системы ГВС, которая при стоимости трубы Ду 20 — 50 тыс. руб./т приведет к экономии с одного стояка внутридомовой системы ГВС Пм=5,0 тыс. руб.

Определим капитальные затраты на внедрение ПТП с учетом дополнительного оборудования, устанавливаемого в них. В качестве основных капитальных затрат принята установка регулятора температуры и регулятора перепада давления. Стоимость этого оборудования в одном ПТП составит около 60 тыс. руб. Капитальные затраты на один стояк внутридомовой системы ГВС в 9-этажном многоквартирном доме составят порядка 540 тыс. руб. [9].

Срок окупаемости затрат от внедрения способа приготовления ГВС в ПТП составляет порядка 6 лет. Данные результаты основаны на расчетном объеме потребления ГВС.

Проведенное обследование систем ГВС жилых домов [4] показало, что реальное значение циркуляционного расхода существенно превышает расчетные значения. Очевидно, если фактический расход воды в циркуляционном трубопроводе системы ГВС будет превышать расчетный в 3-6 раз, срок окупаемости также пропорционально снизится. Таким образом, реальный срок окупаемости технологии ГВС с использованием ПТП составляет не более одного года.

Выводы

1. В системе теплоснабжения г. Ульяновска на одном из ЦТП реализована технология регулирования нагрузки системы горячего водоснабжения, учитывающая неравномерность потребления горячей воды. Особенностью разработанной и реализованной технологии является регулирование расхода воды в циркуляционном трубопроводе в зависимости от температуры воды после водоразборных точек в системе горячего водоснабжения.

2. Проведен анализ параметров ЦТП при различных режимах работы и определена величина экономии теплоты. В режимах работы ЦТП с регулированием циркуляционного расхода горячей воды относительно режима работы без регулирования теплопотребление ЦТП уменьшается на 12-20%.

3. Выполнен технико-экономический расчет реализованной технологии регулирования нагрузки системы горячего водоснабжения. Расчетная годовая экономия теплоты на одном ЦТП составляет 162 тыс. руб. Срок окупаемости, определенный с учетом затрат на покупку и монтаж оборудования, составляет менее трех месяцев.

4. Выполнен сравнительный анализ технологий обеспечения тепловой нагрузки в системах горячего водоснабжения с использованием поквартирных тепловых пунктов. Реализация таких технологий позволяет повысить экономичность работы систем горячего водоснабжения за счет снижения тепловых потерь и затрат на транспорт горячей воды в связи с отсутствием циркуляционного расхода.

5. Расчетный срок окупаемости технологии горячего водоснабжения с использованием поквартирных тепловых пунктов составляет около 6 лет. При фактических затратах на циркуляцию воды в существующих системах ГВС срок окупаемости сокращается до 1 года.

Литература

2. Строительные нормы и правила. СНиП 2.04.07-86*. Тепловые сети. М.: Минстрой России, 1994. 46 с.

3. О предоставлении коммунальных услуг собственникам и пользователям помещений в многоквартирных домах и жилых домов. Постановление Правительства РФ от 06.05.2011 г. № 354 // Российская газета. 2006. № 116. 01.06.2011.

4. Ротов П.В. Регулирование нагрузки городских теплофикационных систем / П.В. Ротов, В.И. Шарапов. Ульяновск: УлГТУ, 2013. 309 с.

5. Квартирные тепловые пункты в многоквартирных жилых домах. Рекомендации АВОК Р НП «АВОК» 3.2.1-2009. М.: ООО ИИП «АВОК-ПРЕСС». 2009. 46 с.

6. Патент 2549089 Российская Федерация. МПК 7 F 24 D 3/08. Способ работы открытой двухтрубной системы теплоснабжения/ П.В. Ротов, М.Е. Орлов, В.И. Шарапов, А.А. Сивухин; заявитель и патентообладатель УлГТУ № 2013145525/12; заявл. 10.10.13; опубл. 20.04.15, Бюл. № 11. 5 с.

7. Сивухин А.А. Сравнительный анализ технологий обеспечения нагрузки горячего водоснабжения / А.А. Сивухин, П.В. Ротов, В.И. Шарапов // Новые технологии в теплоснабжении и строительстве: сборник работ аспирантов и студентов — сотрудников научно-исследовательской лаборатории «Теплоэнергетические системы и установки». Ульяновск: УлГТУ, 2015, Выпуск. 13. С. 373-379.

Adblock
detector