Теплообменник для отопления дома многоквартирного схема

Для чего нужен теплообменник в системе отопления

Теплообменник устройство, передающее тепло от одного источника теплоты другому, исключая при этом непосредственный контакт теплоносителей. Поэтому теоретически теплообменник можно установить в любой системе отопления, главное чтобы от этого была польза , поскольку стоимость самой системы отопления при этом возрастает прямо пропорционально нагрузке, или попросту стоимости самого устанавливаемого теплообменника с регулирующей измерительной и контрольной аппаратурой.

Главная область применения теплообменников в системе отопления это независимая система теплоснабжения. Чтобы понять, зачем нам это нужно необходимо совершить небольшой экскурс в природу имеющихся у нас в стране тепловых сетей.

Зависимая система теплоснабжения, работающая без теплообменника.

Индивидуальный тепловой пункт, спроектированный для работы в зависимой системе теплоснабжения без теплообменника

Существуют две схемы отопления или как правильно говорить теплоснабжения. Зависимая система отопления, с которой мы все хорошее знакомы, это когда котел, нагревая воду, подает ее по трубопроводам прямо в отопительные приборы – батареи отопления в квартире, минуя теплообменник. Конечно, в такой схеме есть тепловой пункт, регулирующие и измерительные приборы, иногда устанавливается погодозависимая автоматика. Только без теплообменника влиять на температуру в батареях, а значит, в целом в квартирах мы можем только в сторону уменьшения температуры.

Читайте также:  Полимерная плитка теплого пола

Для котлов в котельной такая схема тоже не удобная, она требует больших насосов, котлы и трубы тепловой сети работают как гармошка, от того рвутся постоянно, а об утечках тепла и потерянных при этом потерях тепла лучше и не вспоминать. Зато на первичном этапе без установки теплообменника в системе отопления получается довольно дешево, но не эффективно, котельная не знает, сколько тепла нужно каждому, а потребитель не в силах влиять на выработку тепла для отопления, отсюда перетоп и низкая энергетическая эффективность такой системы отопления без разделительного теплообменника.

Независимая система теплоснабжения с теплообменником.

Индивидуальный тепловой пункт, спроектированный для работы в независимой системе теплоснабжения с теплообменником

Теплообменник в такой системе отопления главный прибор позволяющий экономить. Конечно, экономит не он, он только отделяет среды друг от друга, экономит автоматика. Как экономит? Вот пример независимой системы отопления – современная централизованная отопительная система, в ней имеется один главный тепловой пункт, распределяющий тепло и дополнительные теплообменники для каждого потребителя установленные уже в ИТП жилых домов.

От котельной к центральному тепловому пункту, где установлен главный теплообменник, тепло подается в жестком, фиксированном тепловом режиме – например 95 градусов на подаче и теоретически 70 градусов на обратке. В котельной не нужна автоматика и операторы, мощность насосов и диаметр труб тепловой сети могут быть гораздо меньше, утечек в контуре котлов нет по своей природе. Иногда теплообменник большой мощности устанавливают непосредственно в системе отопления котельной, тогда контур получается двойным и в котлах, из-за малого объема теплоносителя во внутреннем контуре, отсутствует накипь, котлы служат вечно.

Блочный тепловой пункт, спроектированный для работы в независимой системе теплоснабжения и горячего водоснабжения с теплообменниками

Установив теплообменник в системе отопления, потребитель получает возможность влиять на температуру в квартире, сколько нужно каждому столько и возьмет, конечно, если в квартире на батареях тоже установлены регулирующие приборы. Выгода для всех налицо.

Как подключить теплый пол к системе отопления через теплообменник.

Нужен теплообменник и для теплого пола. Если вы, например, захотите сделать теплый пол, врезав его в систему отопления без теплообменника вы оставите весь дом без тепла, тепла на полы пойдет немного, но вот вода – теплоноситель будет циркулировать только через ваш пол и не пойдет к соседям, она «лентяй» и идет по самому короткому пути.

Недостаток установки теплообменника в систему отопления только один, увеличение затрат на первоначальном этапе монтажа, но он с лихвой перекрывается всеми ее достоинствами.

Зависимую систему отопления легко модернизировать в независимую систему, путем установки дополнительного теплообменника с регулирующей аппаратурой. Правда, делать это придется одновременно во всем районе, подключенном к вашей котельной. Зато так вы сможете сэкономить до 40 процентов на оплату тепла, по сравнению с вашими сегодняшними затратами без установки такого нужного теплообменника в системе отопления.

Теплообменники в горячем водоснабжении

На сегодняшний день организация процессов по обеспечению водой — это одно из главных условий для создания уютной жизни граждан. Есть несколько различных способов того, как обеспечить водоснабжение, включая создание систем ГВС-сети, но одним из результативных способов сегодня является нагрев воды через отопительную сеть.

Теплообменники необходимо подбирать, исходя из условий монтажа и размещения, а также согласно запросам пользователей и общих возможностей, для монтажа и работы оборудования для отопления. В большинстве случаев только правильный монтаж и грамотный расчет позволяют гражданам забыть о том, что такое перебои или полное отсутствие горячего водоснабжения.

Использование теплообменников пластинчатого типа для обеспечения ГВС

Нагрев воды через теплосети полезен в экономическом плане, так как теплообменники, при сравнении их с классическими котлами на электрической или газовой энергии, работают лишь на систему отопления, и ни на что больше. В итоге себестоимость горячей воды за литр будет намного ниже.

Теплообменники пластинчатого типа применяют энергию тепла в теплосетях для того, чтобы нагревать обыкновенную воду из водопровода. Нагреваясь за счет пластин теплообмена, горячая вода проникает во все точки для разбора воды, включая смесители, краны, душ.

При этом важно учесть и то, что нагреваема вода и вода, которая является носителем тепла, никак не взаимодействуют друг с другом в рамках обменника тепла. Среды для течения вод разделены между собой пластинками, размещенными в теплообменном аппарате, поэтому через них и проходит теплообмен.

Использовать воду, находящуюся в отопительных системах, нельзя для обеспечения бытовых нужд, это вредно и нерационально. Объясняется следующими причинами:

  • 1. Процессы подготовки воды для оборудования и котлов — это дорогая и, чаще всего, сложная процедура, которая требует специальных знаний, опыта и навыков.
  • 2. Для того чтобы смягчить воду и сделать ее менее жесткой для отопительной системы, применяются реагенты и химикаты, которые отрицательно сказываются на человеческом здоровье.
  • 3. В отопительных трубах за много лет скапливается большое количество отложений, также представляющих вред для человека и его здоровья.

Тем не менее, никто не запрещает использовать такую воду не по прямому назначению, а косвенно, ведь теплообменник для горячей воды отличается высокими показателями КПД.

Разновидности теплообменников для ГВС-систем

Сегодня их множество, однако среди всех самыми популярными для использования в быту являются два: это системы кожухотрубного и пластинчатого типа. Следует отметить, что кожухотрубные системы почти исчезли с рынков из-за низких показателей КПД и больших размеров.


Теплообменник пластинчатого типа для ГВС — это несколько гофрированных пластинок, расположенных на жесткой станине. Они идентичны друг другу по конструкциям и габаритам, однако следуют друг за другом, но по принципу зеркального отражения, и делятся между собой специализированными прокладками. Прокладки могут быть как стальными, так и резиновыми.

Из-за чередования пластин по парам появляются такие полости, которые при работе заполняются или жидкостью для нагрева, или носителем тепла. Именно за счет такой конструкции и принципа действия смещение сред между собой исключается полностью.

Посредством направляющих каналов жидкости в теплообменнике двигаются друг к другу, заполняя четные полости, после чего выходят из конструкции, получив или отдав некоторую часть энергии тепла.


Схема и принцип работы пластинчатого теплообменника ГВС

Чем больше пластин по количеству и размеру будет в одном теплообменнике, тем большую площадь он сможет охватить, и тем больше будет его производительность и полезное действие при работе.

Для ряда моделей на балке направления между запорной плитой и станиной есть пространство. Его достаточно для того, чтобы установить пару-тройку плит такого же типа и размера. В таком случае плитки, устанавливаемые дополнительно, будут монтироваться парами.

Все теплообменники пластинчатого типа можно поделить на несколько категорий:

  • 1. Паяные, то есть неразборные и имеющие герметичный основной корпус.
  • 2. Разборные, то есть состоящие из нескольких отдельных плиток.

Главное преимущество и плюс работы с разборными конструкциями заключается в том, что их можно дорабатывать, модернизировать и улучшать, от есть удалять лишние или же добавлять новые пластинки. Что же касается конструкций паяных, то у них такой функции нет.

Однако более популярными сегодня являются пластинчатые паяные системы обеспечения теплом, и популярность их основана на отсутствии зажимных элементов. Благодаря этому они отличаются компактными размерами, которые никак не влияют на полезность и работоспособность.

Схемы подключения

У теплообменника, работающего по принципу вода-вода, есть несколько различных схем подключения, однако контуры первичного типа монтируются к трубкам распределения тепловой сети (она может быть частной или реализуемой городскими службами), а контуры вторичного типа — к трубопроводу водоснабжения.

Чаще всего только от решений по проекту зависит то, какой тип подключения разрешено применять. Также схема монтажа и ее выбор основаны на нормах «Проектирования теплопунктов» и в стандарте СП под номером 41-101-95. Если соотношение и разница максимально возможного водного теплопотока на ГВС к теплопотоку на отопление определено в рамках от ≤0,2 до ≥1, то основой является схема подключения в одну ступень, а если от 0,2≤ до ≤1, то из двух степеней.

Стандартная


Самая простая для реализации и экономически выгодная схема — это параллельная. При такой схеме теплообменники монтируются последовательно по отношении к регулирующей арматуре, то есть запорному клапану, а также параллельно всей тепловой сети. Для того чтобы достичь максимального обмена тепла внутри системы, необходимы высокие показатели расхода носителей тепла.

Двухступенчатая схема


Двухступенчатая смешанная система

Если использовать двухступенчатую схему, то при ней нагрев воды происходит или в паре независимых аппаратов, или в установке моноблока. При этом важно помнить о том, что схема монтажа и ее сложность будут зависеть от общей конфигурации сети. С другой стороны, при схеме из двух ступеней повышается уровень КПД всей системы, а также снижается расход носителей тепла (примерно до 40 процентов).

При такой схеме подготовка воды происходит за два шага. В ходе первого шага применяется тепловая энергия, нагревающая воду до 40 градусов, а в ходе второго шага вода греется до 60 градусов.

Подключение последовательного типа


Двухступенчатая последовательная схема

Такая схема реализуется в рамках одного из аппаратов для теплообмена ГВС, причем данный тип обменника тепла намного сложнее по устройству, если сравнивать его со стандартными схемами. Также он будет стоить намного дороже.

Расчет теплообменников

При определении теплообменника необходимо учитывать такие параметры, как:

  • 1. количество пользователей или жильцов;
  • 2. расход и норма расхода теплой воды за сутки на каждого потребителя;
  • 3. максимально возможная температура носителей тепла на определенный временной период;
  • 4. температура и другие показатели водопроводных вод на определенный временной период;
  • 5. допустимые показатели потери тепла (согласно нормативам, этот показатель не должен превышать 5 процентов);
  • 6. суммарное количество мест для забора воды (это могут быть краны, смесители или души);
  • 7. режим и работа оборудования (постоянная или периодическая).

Производительность и эффективность работы теплообменной системы для квартир в городе (в частности, при подключении к тепловой сети) рассчитывается по показателям работы в зимний период. Зимой температура носителей тепла может достигать 120/80 градусов.

При этом показатели во время весны или осени могут опуститься до уровня 70/40 градусов, а температура будет оставаться очень низкой вплоть до критичной отметки. Именно поэтому расчеты и показатели теплообменника важно проводить одновременно как для весеннего и осеннего, так и для работы во время зимы.

Важно и то, что никто не способен дать гарантии того, что эти расчет будут на 100 процентов верными. Все дело в том, что в сфере ЖКХ очень часто предпочитают игнорировать или пренебрегать стандартами для обслуживания конечного потребителя.

В частных секторах эти показатели намного точнее, ведь пользователь всегда уверен в эффективности и работоспособности котла и всей отопительной системы.

Для чего нужен теплообменник в системе отопления

Как видно из названия, теплообменник – это устройство для обмена теплом. Среды или поверхности с разными температурами взаимодействуют, изменяя температуру друг друга.

Теплообменники используют в вентиляции, охлаждении, кондиционировании, но велика их роль и в отоплении. Их устанавливают на различных производствах, в коммунальном хозяйстве и для персонального использования.

Важно позаботиться о наличии такого устройства, например, в частном доме с независимой системой отопления. С его помощью можно будет регулировать температуру воздуха в помещении, контролировать забор тепла от основного источника и т.д.

Теплообменники для систем отопления

В системах отопления эти устройства не так популярны в нашей стране, как в других, там, где каждый пользователь может забирать столько тепла от общего источника, сколько ему требуется. ТО играют ключевую роль в отоплении дома или дачи, а также везде, где есть необходимость регулировать температуру. Установка такого устройства в котельной позволяет автоматизировать работу всей системы и сэкономить.

В качестве носителя тепла чаще всего выступает вода, но может быть и антифриз, масло и т.д.

По сути, ТО — это разделитель между основным источником тепла (поставщиком) и системой конечного пользователя. Система отопления, в которой присутствует ТО, называется независимой. В котельных обменники устанавливаются для погодного регулирования, а также он снижает износ современных труб. Дело в том, что их сейчас делают из пластика, и максимальная температура, которую они могут выдерживать – 90 градусов.

Если теплообменника в системе нет, то от центра (котла) горячая вода передается непосредственно потребителю – в батареи. Но котельная не регулирует подачу тепла, и она не меняется в зависимости от выбора потребителей или погодных условий.

Если в ИТП жилого дома установить теплообменники, то это позволяет существенно экономить. Каждый жилец регулирует температуру по потребностям с помощью кранов на радиаторах в квартирах. Тепло можно увеличивать при сильных морозах и уменьшать при потеплении.

Иногда такие устройства устанавливают и в самой котельной. Такая двойная система, что тоже помогает сэкономить: во внутреннем контуре меньше теплоносителя, а значит, в котлах почти не образуется накипь, они могут служить гораздо дольше.

Теплообменник в домашнем отоплении

В системе отопления дома или дачи теплообменник играет ключевую роль.

Если вы устанавливаете у себя такое устройство, то потом можно развернуть целую систему регулирования: для контроля температуры в разных комнатах, работы теплых полов и т.д. К теплообменнику проводят трубу с горячим носителем от котельной, а с другой стороны – внутреннюю систему с реле, контроллерами и т.д. Вы получаете не только контроль над температурой воздуха в помещении, использование этого устройства помогает прогревать дом более равномерно, стабилизирует давление в трубах, экономит энергию и продлевает срок службы труб.

Кроме того, он сам по себе может служить источником для получения горячей воды: в один контур приходит горячий носитель, а к другому подводится водопровод. Это тоже способ сэкономить: на бойлерах и электроэнергии.

Подключить теплые полы, обогрев ступеней и т.д. тоже не получится без теплообменника. Теплые полы забирают на себя большое количество горячей воды, оставляя соседние помещения в холоде. Кроме того, оптимальной температура носителя тепла для такого пола не должна быть выше 45 градусов.

Виды теплообменников

Все устройства делятся на две большие группы. В первых среды смешиваются друг с другом, во втором случае – они разделены стенкой. Их используют чаще и называют поверхностными. В свою очередь, такие теплообменники делятся тоже на два типа.

  1. Рекуператоры. В них тепло передается через стенку, от разных носителей, которые независимо друг от друга движется по разным каналам.
  2. Регенераторы. Два потока контактируют с одной и той же поверхностью. Например, горячий поток нагревает ее, а затем холодный забирает тепло.

Самые распространенные ТО первого типа – рекуперативные. К ним относятся

  • Кожухотрубчатые: внутри кожуха находятся трубы, внутри которых течет одна среда (горячая), а другая (холодная) движется между ними.
  • Погружные: представляют из себя бак, заполненный жидкостью, внутри которого находится змеевик со второй средой.
  • Спиральные: несколько спиралей привариваются к одной перегородке. Используются для работы с вязкими средами.
  • Пластинчатые разборные: самый распространенный вид. Это особым образом перфорированные (для увеличения поверхности) пластины, собранные вместе, а между ними движутся различные среды.
  • «Труба в трубе»: одна труба вставляется в другую, между ними проходит теплообмен. Может состоять из нескольких звеньев. Выдерживают высокое давление, расход воды в системе небольшой.
  • Оросительный: собраны несколько труб, по их поверхности течет охлаждающая жидкость. Часто используются в качестве конденсаторов.

Подберем теплообменник для отопления со скидкой до 70 %

Пластинчатый теплообменник: устройство

В основном, в независимых системах отопления применяются пластинчатые теплообменники. По сути это набор пластин, которые перфорируют для увеличения полезной площади и собирают между двумя плитами. Одна из этих плит обычно не фиксируется, ее можно снимать и увеличивать или уменьшать количество пластин. Бывают с спаянные варианты, их уже не получится разобрать.

Между пластинами движутся горячая и холодная жидкости, попеременно. Конструкция герметична благодаря уплотнителям.

Пластины – это основа конструкции. Их изготавливают из стали, меди, графита, титана и других сплавов, толщиной от 0,4 до 1 мм., в зависимости от давления. Выбор материала обусловлен условиями использования, а также выбором среды, которой будет заполнено устройство. Чаще всего это вода, но бывают случаи, например, на специализированных производствах, где используют агрессивные жидкости.

Пластины плотно прижаты друг к другу и образуют каналы благодаря специальной штамповке. На одной стороне каждой пластины есть пазы, куда вставляются резиновые прокладки для герметичности. Устанавливают их одну за одной, в поворот 180 градусов.

В пластинах по 4 отверстия. Два из них служат для провода и отвода горячей и нагреваемой жидкости. Два другие предотвращают смешение жидкостей за счет дополнительной изоляции. Если произойдет прорыв одного из контуров, то дренажные пазы также препятствуют смешиванию.

Благодаря тому, что греющая и нагреваемая среды направлены в противоток друг другу, и извилистому течению (по каналам) эффективность обмена теплом увеличивается, а гидравлическое сопротивление относительно небольшое.

Система самоочищается за счет турбулентных потоков, но на пластинах может откладываться накипь, осадки веществ, находящихся в воде, потому их нужно периодически промывать специальными растворами. Можно понять, что пришло время для очистки по снижения работоспособности прибора, перепадах давления и т.д.

При сборке сначала закрепляются направляющие на штативе и неподвижной плите. На них нанизываются пластины, и подвижная плита стягивается с неподвижной болтами.

Существует 2 варианта компоновки пластин.

Одноходовая. Теплоноситель разделяется на потоки, которые текут параллельно друг другу по пластинам, потом сливается и выходит в порт для вывода.

Многоходовая. Здесь устройство чуть сложнее. Благодаря перегородкам в разделительных пластинах теплоноситель течет по каналам, как бы разворачиваясь в пластине.

Плюсы и минусы пластинчатых теплообменников

Пластинчатые ТО обладают хорошими характеристиками теплопередачи при компактных размерах. Еще один плюс таких устройств в том, что их можно изготовить индивидуально под конкретные задачи.

К плюсам однозначно можно отнести:

  • Вариативность размеров теплообменника и материалов, из которых его изготавливают.
  • Возможность изменять количество пластин и таким образом изменять мощность устройства (если речь не идет о запаянном ТО).
  • Высокий процент теплопередачи.
  • Низкие теплопотери.
  • Простота использования: устройство легко разобрать, промыть, собрать.
  • Легко ремонтировать: пластины, в случае необходимости, можно просто заменить.

Но есть у пластинчатых теплообменников и минусы:

  • Давление в пластинах не должно превышать 25 кг/кв.см.
  • Температура не выше 200 градусов.
  • Если теплоноситель содержит большое количество примесей, на пластинах будет быстро образовываться накипь.

Некоторые изменения в конструкции повышают прочность и КПД пластинчатых теплообменников. Есть такие разновидности, как пластинчато-ребристый и оребренно-пластинчатый. В первом варианте между разделительными пластинами проложены ребристые насадки. Подходят для теплообмена с неагрессивными жидкостями и газом. Оребренно-пластинчатые актуальны при газовом отоплении.

Как правильно выбрать теплообменник

Есть огромное количество теплообменников и нужно знать, как правильно их выбрать. Лучше всего, если такой прибор изготовят под конкретные задачи профессионалы. Он будет рассчитан на определенную нагрузку, материалы будут подходить для теплоносителя и срок службы прибора будет значительно больше, чем при выборе наугад. Что нужно знать для выбора теплообменника:

  • температура в контуре теплосети;
  • тепловая нагрузка;
  • температура во внутреннем контуре;
  • рабочее давление;
  • допустимые потери напора;
  • загрязненность рабочей среды;
  • характеристики теплоносителя и т.д.

Подробнее об этом можно узнать на странице
Рассчитать теплообменник
где вы можете указать нужные вам характеристики и получить предложение по ПТО от наших менеджеров.

Теплообменники необходимы для систем отопления как юридическим организациям (поставщикам услуг, управляющим компаниям и т.д.), так и частным лицам – для установки теплого пола или подогрева ступенек в доме, контроля расходов на отопление, экономии на энергии. Современные ТО просты и безопасны в использовании.

Взгляните на представленные теплообменники для отопления

Оцените статью